In recent years, there has been a trend of oil-based lubricants being replaced by water-based lubricants. Boron nitride coatings are often used in forging nickel based alloys, high melting point alloys, and titanium machined parts, which not only provide lubrication but also prevent workpiece oxidation.
In recent years, the field of thermal management materials has seen significant advancements. One such area of focus has been the modification of the surface properties of aluminum powders to improve their thermal performance. As a leader in the production of high-quality nano aluminum powders, SAT NANO has played a key role in these efforts. In this blog post, we will explore the methods and benefits of surface modification of aluminum powder.
In recent years, the field of thermal management materials has seen significant advancements. One such area of focus has been the modification of the surface properties of aluminum powders to improve their thermal performance. As a leader in the production of high-quality nano aluminum powders, SAT NANO has played a key role in these efforts. In this blog post, we will explore the methods and benefits of surface modification of aluminum powder.
SiC powder is a widely used material in various applications such as electronic devices, coatings, and composites. However, its agglomeration and inadequate dispersion in aqueous media limit its efficiency. Therefore, surface modification techniques are essential to enhance the properties of SiC powder. This article discusses two methods for the surface modification of ultrafine SiC powder: PDADMAC and PSS modification and AC1830 surfactant modification.
Nano-aluminum oxide is a widely used material, especially in the field of nanotechnology, due to its unique physicochemical properties such as high surface area, high thermal stability, and excellent catalytic activity. However, the surface properties of nano-aluminum oxide play an important role in its performance in many applications. Therefore, surface modification of nano-aluminum oxide is essential to improve its properties for specific applications. In this article, we discuss one of the effective surface modification methods of nano-aluminum oxide, which involves using a silane coupling agent (KH-560).
The synthesis of carbon quantum dots can be mainly divided into two categories: top-down method and bottom-up method. Through the pre-treatment, preparation, and subsequent processing, carbon quantum dots can be controlled in size, passivated on the surface, doped with heteroatoms, and nanocomposites to meet the requirements.